Width optimization of Gaussian function by genetic algorithm in RBF networks
نویسنده
چکیده
Conventionally, in radial basis function (RBF) network width factor is constructed by obtaining r-nearest neighbor rule or taking equal to a constant for all Gaussian functions. This paper proposes an approach for the construction of width factor using genetic algorithm to optimize the Gaussian function. Our experimental results show that our proposed optimal-based width outperforms the conventional RBFs. Hence, the width optimization is expected to be a new alternative way to the construction of RBF networks.
منابع مشابه
Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks
The paper presents a two-level learning method for radial basis function (RBF) networks. A regularized orthogonal least squares (ROLS) algorithm is employed at the lower level to construct RBF networks while the two key learning parameters, the regularization parameter and the RBF width, are optimized using a genetic algorithm (GA) at the upper level. Nonlinear time series modeling and predicti...
متن کاملUse of the q-Gaussian Function in Radial Basis Function Networks
Radial Basis Function Networks (RBFNs) have been successfully employed in several function approximation and pattern recognition problems. In RBFNs, radial basis functions are used to compute the activation of artificial neurons. The use of different radial basis functions in RBFN has been reported in the literature. Here, the use of the q-Gaussian function as a radial basis function in RBFNs i...
متن کاملImproving Accuracy of DGPS Correction Prediction in Position Domain using Radial Basis Function Neural Network Trained by PSO Algorithm
Differential Global Positioning System (DGPS) provides differential corrections for a GPS receiver in order to improve the navigation solution accuracy. DGPS position signals are accurate, but very slow updates. Improving DGPS corrections prediction accuracy has received considerable attention in past decades. In this research work, the Neural Network (NN) based on the Gaussian Radial Basis Fun...
متن کاملCombined Approach of Rbf Neural Networks, Genetic Algorithms and Local Search and Its Application to the Identification of a Non-linear Process
The identification of non-linear systems by artificial neural networks has been successfully applied in many applications. In this context, the radial basis function neural network (RBF-NN) is a powerful approach for non-linear system identification. An RBF neural network has an input layer, a hidden layer and an output layer. The neurons in the hidden layer contain Gaussian transfer functions ...
متن کاملForecasting and Sensitivity Analysis of Monthly Evaporation from Siah Bisheh Dam Reservoir using Artificial neural Networks combined with Genetic Algorithm
Evaporation process, the main component of the water cycle in nature, is essential in agricultural studies, hydrology and meteorology, the operation of reservoirs, irrigation and drainage systems, irrigation scheduling and management of water resources. Various methods have been presented for estimating evaporation from free surface including water budget method, evaporation from pan and experi...
متن کامل